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Abstract
For optimal processing and design of entangled polymeric materials it is important to establish
a rigorous link between the detailed molecular composition of the polymer and the viscoelastic
properties of the macroscopic melt. We review current and past computer simulation techniques
and critically assess their ability to provide such a link between chemistry and rheology. We
distinguish between two classes of coarse-graining levels, which we term coarse-grained
molecular dynamics (CGMD) and coarse-grained stochastic dynamics (CGSD). In CGMD the
coarse-grained beads are still relatively hard, thus automatically preventing bond crossing. This
also implies an upper limit on the number of atoms that can be lumped together (up to five
backbone carbon atoms) and therefore on the longest chain lengths that can be studied. To reach
a higher degree of coarse-graining, in CGSD many more atoms are lumped together (more than
ten backbone carbon atoms), leading to relatively soft beads. In that case friction and stochastic
forces dominate the interactions, and action must be undertaken to prevent bond crossing. We
also review alternative methods that make use of the tube model of polymer dynamics, by
obtaining the entanglement characteristics through a primitive path analysis and by simulation
of a primitive chain network. We finally review super-coarse-grained methods in which an
entire polymer is represented by a single particle, and comment on ways to include memory
effects and transient forces.

(Some figures in this article are in colour only in the electronic version)
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1. Introduction

Ever since the first synthetic polymers were made by
Staudinger and their molecular weights were measured by
Debye and Bueche, polymer systems have received continual
interest from both theorists and experimentalists. Most
processing of polymers takes place in the melt state, when
they are very viscous and have surprising (temporary) elastic
properties. For optimal processing, design and application
of polymeric melts it is important to establish a rigorous
link between their molecular composition and macroscopic
mechanical properties, i.e. between polymer chemistry and
rheology.

Establishing such a link is by no means an easy task
and has, despite considerable progress, not yet been fully
achieved. Unlike simple molecules, interactions within and
between polymer chains are characterized by a large range
of different time and length scales. The dynamics of
atomic bond vibrations are characterized by Ångström and
sub-picosecond scales, whereas the dynamics of statistically
independent Kuhn segments are characterized by nanometre
and tens of picosecond scales [1]. Beyond this, the
connectivity and mutual uncrossability of the segments cause
an interdependence between features on a hierarchy of scales.
The full chain, finally, is characterized by its radius of
gyration of 10–100 nm. This may not appear as a very large
increase from the Kuhn segment scale, but the associated
timescales increase dramatically, to milliseconds, seconds or
even longer.

The enormously long intrinsic timescales are often
rationalized by viewing polymer systems as temporary rubbery
networks. Such a network arises as a result of mutual
uncrossability of the polymer chains—they are entangled.
With the advent of the reptation theory of de Gennes, Doi
and Edwards [1], a new concept was introduced in the theory
of polymer dynamics. In reptation theory each polymer
is supposed to move in a tube around a Gaussian path in
space. The tube only serves one purpose, namely to roughly
represent the uncrossability of the surrounding chains and to
turn a difficult multi-chain problem into a one-chain problem.
The tube is clearly an idealized mean-field concept, and
many extensions of the original model have been postulated
to explain experimental observations; the difficulty is that
without detailed information such postulates often remain
unchecked [2].

Figure 1. The dynamics of polymers can be simulated by different
methods which differ in their level of detail describing polymer
configurations and entanglement effects. Top: atomistic molecular
dynamics simulations are usually sufficiently detailed to faithfully
predict the dynamic properties of polymers of a specified chemistry.
Second from top: small groups of atoms are lumped together (up to
five backbone carbon atoms) into coarse-grained entities; the
interaction between these ‘beads’ is still hard enough to make bond
crossing energetically unfavourable. Middle: many more atoms are
lumped together (more than ten backbone carbon atoms) into
coarse-grained entities; the interactions between these ‘blobs’ are so
soft that uncrossability needs to be enforced by additional
constraints. Second from bottom: polymer chains are forced to
diffuse along primitive paths, representing the temporary topological
network which arises because of uncrossability of chains. Bottom:
each polymer chain is represented by just one particle; the
entanglement effect is captured through addition of slow variables
whose deviations from equilibrium lead to transient forces.

In this review we focus on computer simulation techniques
that may help in establishing the link between chemistry and
large-scale dynamics and rheology. Computer simulations
can check the assumptions made in theoretical models, and
either accept or reject them [2]. Ideally, one would like to
use atomistically detailed models because they can accurately
capture the subtleties in the interactions between the polymers.
However, because of the intrinsically slow dynamics, a direct
prediction of the large-scale dynamics and rheology from
such detailed models is computationally unattainable (except
for the case of unentangled or slightly entangled polymers).
Traversing the road from chemistry to rheology is usually a
bumpy ride: the only way to reach the larger scales is by going
through a succession of coarse-graining steps. Different levels
of coarse-graining are schematically indicated in figure 1.
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A number of excellent reviews on coarse-graining of
entangled polymers have already appeared in the literature.
Some of these reviews focus mainly on static properties [3–6],
whereas others focus on the dynamic properties as well [7–9].
This review provides an up-to-date overview of past and
current coarse-graining efforts, with a strong emphasis on our
own opinion about the correct way to proceed in the future. We
therefore focus on methods to handle friction, uncrossability
and memory, all of which are intimately connected to the long-
time dynamic properties and rheology.

This review is structured as follows. In section 2 we
review the work that has been done using atomistically detailed
models. In section 3 we introduce the theory of coarse-
graining and divide coarse-grained dynamics methods into
two classes: (1) those with relatively low levels of coarse-
graining (up to five backbone carbon atoms), where friction is
not dominant or ignored and where uncrossability is included
automatically by the excluded-volume interactions between
relatively hard beads, and (2) those with relatively high levels
of coarse-graining (more than ten backbone carbon atoms),
where friction is dominant and measures need to be taken to
ensure uncrossability. Section 4 reviews the work that has been
undertaken in the first class and section 5 reviews the work
done in the second class. In section 6 we review the attempts
that have been undertaken at characterizing primitive paths
and the use of primitive path models. In section 7 we focus
on the ultimate form of particulate coarse-graining, where an
entire polymer is represented by just one particle. Finally, we
conclude in section 8.

2. Atomistically detailed models

2.1. Possibilities and limitations

On a microscopic level, molecular dynamics (MD) and Monte
Carlo (MC) simulations can be performed, in which each atom
of a polymer chain is represented separately, see figure 1
(top) [10]. The atoms are modelled as interacting particles
and their positions are updated according to Newton’s laws
(MD) or by certain trial moves which are accepted, depending
on the statistical ensemble, with a certain probability (MC).
Accurate force fields have been constructed to cater for
anyone’s research interests, provided they exclude chemical
reactions and other phenomena of a quantum mechanical
nature. Bulk behaviour is simulated by applying periodic
boundary conditions to the simulation box. Typical MD
simulations cover the motion of a few tens of thousands
of atoms over a period of a few nanoseconds; on current
computers, such a run would take a week to complete.

This already sets a limit to the length of polymers that can
be simulated in atomistic detail. First, the radius of gyration
of the polymer chain typically grows as

√
n, where n is the

number of monomers per chain. A polymer should not interact
with itself via the periodic boundaries, which means that the
volume of the box, and hence the number of particles, should
scale as n3/2. Second, the longest intrinsic relaxation time of
a polymer chain in a melt scales very fast, usually as n2 for

unentangled polymers and as n3.4 for entangled polymers [1].
To measure long-time correlation functions, the simulations
must be performed for at least as long as this timescale.

Sometimes one is interested in the static properties of a
melt of long polymer chains, or in faster dynamical relaxation
processes on a more local scale. In such cases, one still
needs to make sure that the atomistic conformations in the
simulation box have sufficiently relaxed to faithfully represent
an equilibrium state.

2.2. Equilibration schemes for atomistically detailed models

So how does one ensure that an atomistically detailed polymer
melt is sufficiently relaxed? A first reaction may be to start
with an ensemble of chains with a correct end-to-end distance
distribution, arrange them randomly in the simulation box and
introduce excluded volume rapidly. However, Auhl et al [11]
showed that this procedure leads to deformations on short
length scales, which relax only when the chains have moved
over their own size, i.e. after one longest intrinsic relaxation
time. The authors also showed how this local deformation may
be overcome by first pre-packing the Gaussian chains, reducing
the density fluctuations in the system, followed by a more
gradual introduction of excluded volume. Another method is
to apply a double-bridging MC algorithm in which new bonds
are formed across a pair of chains, creating two new chains
substantially different from the original two [11].

The latter method is similar in spirit to the end-
bridging (EB) MC method, see figure 2, which has been
developed extensively in the groups of Mavrantzas and
Theodorou [12–22]. A thorough analysis of the geometric
formulation and numerical implementation of the original EB
algorithm is given in [12]. Using this method, equilibrated
samples of polyethylene (up to C500) [12] and cis-1,4-
polyisoprene (up to C200) [14, 15] have been generated. Later,
faster methods were developed with directed moves, dubbed
directed internal bridging (DIB) and directed end bridging
(DEB), which enabled them to equilibrate polyethylene
samples as long as C6000 [16, 17]. Extensions of the EB
algorithm to different chain architectures have also been
introduced [18].

An exciting development, of relevance to the rheology of
polymer melts, is the use of EB moves in combination with a
small tensorial field to obtain well-equilibrated, pre-oriented,
strained configurations [13, 20, 21]. This way, viscoelastic
properties can be measured from atomistically detailed models,
although up to now only simulations with unentangled chains
have been reported.

In light of section 4.3 we already mention that atomistic
conformations can also be equilibrated efficiently by mapping
them onto a coarse-grained model, equilibrating the coarse-
grained model and finally reinserting the atomistic details. Of
course, EB moves can also be applied in these coarse-grained
equilibration runs [23–25].

2.3. Examples of atomistic simulations of dynamic properties

Given the very steep increase of terminal relaxation times
with molecular weight, it should come as no surprise that
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Figure 2. Schematic of the EB move. Left: initial configuration. The red arrow indicates that atom i of chain ich will attack atom j of chain
j ch; then, trimer ( ja, jb, j c) will be excised from the system. Right: chain configurations after the application of the move. Atoms i and j
are connected through the new trimer bridge ( ja′, jb′, j c′). Reprinted from [19], copyright 2006, with permission from Elsevier.

atomistically detailed MD simulations of the dynamics of
polymer melts have only been performed for relatively short
unentangled or slightly entangled chains.

Polyethylene, because of its simplicity, has been one of
the most favourite polymers studied in the past. Starting in
1995, Paul and co-workers studied the diffusion coefficient
of unentangled chains, C44 [26] and C100 [27], both by an
explicit atom model and by a united atom model. In this united
atom model, which was optimized to reproduce experimental
P–V –T behaviour, each methyl CHx group is treated as one
particle. The viscosity of C100 was investigated by Moore
et al [28]. Later, Harmandaris et al studied the diffusion
coefficient of samples of C24, C78 and C156 polyethylene which
had been previously relaxed by the EB algorithm [29]. The
shear relaxation modulus G(t) of the C24 and C78 samples were
also obtained by analysing equilibrium stress fluctuations [13].
Soon after, in 2001, our group reported the mean square
displacement, shear relaxation modulus and viscosity of a
C120 polyethylene sample [30]. Finally, in 2003 mean square
displacements and diffusion coefficients for chain lengths C78

to C250 were reported [31].
Other polymer species have been studied as well, notably

1,4-polybutadiene. Whereas Smith and co-workers in 1999
were still limited to 100 carbon atom simulations [32], in 2005
Tsolou and co-workers were able to study the self-diffusion
and dynamic structure factor of polybutadienes with up to 400
carbon atoms [33].

Despite the fast growth in computing power, the extremely
fast increase of the longest relaxation time with chain length,
n3.4, implies that atomistically detailed MD simulations will
remain limited to only slightly entangled samples. Longer
chains can be, and have been, studied, for example Ryckaert
studied a melt of fully atomistic C1000 chains [34], but this can
only be done for simulation times much shorter than the longest
relaxation time.

3. Coarse-graining: lumping together the atoms

3.1. Theory of coarse-graining

In order to increase the time and length scales accessible
in the simulation of polymers, detailed atomistic models are
replaced by coarse-grained models in which each particle
represents a collection of atomic particles. In this review
we focus on the bottom-up (ab initio) approach where the
interactions between the coarse-grained particles are directly
linked to the atomistic interactions and are aimed at correctly
reproducing the structural, thermodynamic and/or dynamical
properties [3, 7, 9, 10, 35].

When coarse-graining polymers, the polymer chain is
subdivided into subchains, partitioning the degrees of freedom
into two sets: the coarse-grain coordinates and momenta
{R, P}, which are the centres of mass (or characteristic
atom) positions and momenta of the subchains, and the ‘bath’
coordinates and momenta {q, p}, which are the remaining
internal coordinates and momenta describing the details of the
configurations. The potential of mean force governing the
forces among the coarse-grained coordinates is given by

A(R) = −kBT ln
∫

dp dq exp(−β HB(p, q; R)), (1)

where β = 1/(kBT ) and HB(p, q; R) is the bath Hamiltonian,
equal to the sum of kinetic energy TB(p, q) of the bath
variables and the potential energy �(R, q) of the entire system.
In a system containing only coarse-grain particles, employing
the potential of mean force A(R) ensures a correct distribution
of R coordinates, as well as correct thermodynamic properties.
Unfortunately, the potential of mean force is generally a
complicated function of all coordinates R and invariably
includes complicated multi-body interactions. For practical
and computational reasons it is impossible to calculate and
store the potential of mean force for all possible multi-body
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configurations. Some approximations need to be made. The
most widely used approximation is that the potential of mean
force can be represented by pairwise and sometimes triplet
terms. We would like to issue a warning that a naive use
of the interactions at the coarse-grained level can lead to
incorrect values for some thermodynamic properties. More
specifically, the thermodynamics of the coarse-grained system
will not correspond to the thermodynamics of the microscopic
system if one falsely assumes that one is still dealing with an
atomistic system, where the coarse-grain particles are the only
particles present and the effective pair interactions are the only
energy terms present. It should be intuitively clear that the
relatively softer interactions will then lead to a pressure which
is generally too small and a system which is too compressible.
The source of this thermodynamic inconsistency can be traced
to the state point dependence as well as the pair approximation
of the potential of mean force. For a discussion of these
matters, the reader is referred to [36–38].

The theory underlying coarse-graining of dynamics is
the Mori–Zwanzig formalism [10, 35, 39, 40], where a
projection operator technique leads to a generalized Langevin
equation governing the dynamics of the coarse variables.
Although the dynamics of the atomistic model is deterministic
and conservative, the dynamics of the generalized Langevin
equation is stochastic and includes dissipation and memory
effects:

dPn

dt
(t) = − ∂ A

∂ Rn
(t) + FR

n,t

−
∑

m

∫ t

0
dτ Pm(t − τ )ζmn(τ ; R(t − τ )). (2)

Here Pn is the momentum of coarse-grained particle n, A
is the above-mentioned potential of mean force, FR

n,t is a
random force and ζmn is a time-dependent friction matrix. The
Mori–Zwanzig formalism provides an exact derivation for this
friction matrix, but its interpretation is not straightforward:
ζmn(τ ; R(t − τ )) is the correlation, at the point where the
coordinates R equal R(t − τ ), of the random force at time
zero on particle m with the random force propagated by a
complicated operator on particle n. Specifically, this operator
is exp{(1 − P)iLτ }, where L is the Liouville operator and P
projects onto the coarse-grain coordinates [10]. If the theory
is followed to the rule (including the exact potential of mean
force), a correct description of the structure and dynamics
follows automatically. However, as the above equation
shows, the resulting friction on a particle again depends on
all coordinates R and momenta P . Compared to the case
of the potential of mean force the situation is aggravated,
because the friction depends also on the coordinates and
momenta in the past. Clearly, for practical and computational
reasons approximations need to be made. For example, it is
often assumed that the friction is pairwise additive with the
contribution of a pair depending only on the positions and
momenta of the two particles involved. Also memory effects
are often ignored. This may or may not be correct. Making the
right approximations, often based on physical intuition, is the
responsibility of the coarse-grainer.

3.2. Classification of coarse-grained dynamics methods

The term ‘coarse-grained dynamics’ is used rather loosely
in the literature. Many different levels of coarse-graining
are encountered, with different approaches to treating the
friction. In our view it is important to distinguish between two
main classes, which may be termed coarse-grained molecular
dynamics and coarse-grained stochastic dynamics, see figure 1.
The difference is the following:

• Coarse-grained molecular dynamics (CGMD) applies to
simulations where a few atoms (up to one chemical repeat
unit or five backbone carbon atoms) are coarse-grained to
relatively hard beads. In this case the additional friction
components are often not dominant, and in most cases
are ignored altogether. Ignoring the friction leads to too
fast dynamics, which is beneficial for equilibration, but
requires a rescaling of time when quantitative comparison
with real dynamics and rheology is desired.

• Coarse-grained stochastic dynamics (CGSD) applies to
simulations where many atoms (many chemical repeat
units or more than ten backbone carbon atoms) are coarse-
grained to relatively soft beads or ‘blobs’. The friction
and stochastic forces dominate the interactions, and cannot
simply be ignored but must be included in the equations
of motion. Often it is assumed that the stochastic
forces are delta-correlated, i.e. have no memory. Unless
countermeasures are taken, the soft interactions cannot
prevent crossing of the bonds between the coarse-grained
particles, leading to unrealistic dynamics for entangled
polymers.

In the following sections we will treat both levels of coarse-
graining.

4. Lumping a few atoms into beads

Let us first focus on CGMD simulations. A coarse-grained
particle may represent the centre of mass of a small group
of atoms, or the position of a characteristic atom which is
important in determining the local structure of the polymer
backbone or a side group. An example is given in figure 3
where polystyrene chains are coarse-grained to ‘A’ and ‘B’
beads representing a part of the backbone and the phenyl ring,
respectively [41].

4.1. Targeting the structure of real polymer chains

Most coarse-graining efforts focus on reproducing the structure
of the underlying microscopic chain [3, 5–8, 42].

The structure of a polymer melt can be described
in terms of distribution functions of distances and angles
between the coarse-grained particles. Once it is decided
what the position of a coarse-grained particle represents, it
is rather straightforward to measure distribution functions
for these coarse-grained coordinates in atomistically detailed
MD simulations. Intramolecular distribution functions include
those for the distance between two adjacent coarse-grained
beads, the angle between three consecutive beads and the
dihedral angle between four consecutive beads. Other
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Figure 3. Coarse-graining of polystyrene to two types of beads ‘A’
and ‘B’ representing part of the backbone and a phenyl ring,
respectively. Dashed lines show the bonds between the
coarse-grained beads A and B. Reprinted with permission from [41].
Copyright 2009 American Chemical Society.

structural distribution functions include those for distances
between beads on different chains, and can also include those
for distances between beads on the same chain but sufficiently
far away along the backbone. These distribution functions are
used as target functions for the coarse-grained interactions.

Usually, the local intramolecular interactions between
consecutive beads are relatively strong and therefore rather
unperturbed by intermolecular interactions. In such a case a
simple Boltzmann inversion is enough to obtain the coarse-
grained interaction [5]. For example, from a distribution
Pbond(r) of bond lengths r between consecutive coarse-grained
particles (obtained in an atomistic simulation and already
corrected for the Jacobian 4πr 2), the coarse-grained bond
potential is derived as

Vbond(r) = −kBT ln Pbond(r). (3)

One word of caution is in place here. Factorizing the various
distribution functions into independent parts representing
bond distances, bond angles and dihedral angles ignores any
correlations which may be present between them [43, 44].

The nonbonded interaction, represented by the radial
distribution function g(r) between nonbonded coarse-grained
beads, is, however, much more subtle. It contains both
entropic and enthalpic contributions and a simple Boltzmann
inversion is insufficient because this ignores important packing
effects [4, 5, 42, 45]. Different methods have been proposed
to find the nonbonded interaction which reproduces the target
radial distribution function gtarget(r). One option is to choose a
simple functional form for the interaction, based on physical
intuition, and optimize the parameters of this function to
reproduce the complicated radial distribution function as close
as possible [7, 8, 44, 46]. For example, the nonbonded
interactions between the coarse-grained polystyrene beads
of figure 3 have been found by optimizing the parameters
of a generalized Lennard-Jones-type interaction [44]. As
figure 4 shows, the resulting nonbonded radial distribution
functions agree very well with those obtained from atomistic
simulations.

Figure 4. Nonbonded A–A pair distribution function for a
polystyrene melt (see figure 3) at T = 463 K, obtained from
atomistic MD simulations (solid line) and coarse-grained simulation
(dashed line). Reproduced with permission from [44]. Copyright
2007 Wiley-VCH Verlag GmbH and Co. KGaA.

In some cases a predefined functional form is not
flexible enough to capture the intricacies of the target
radial distribution function. More complicated analytical
potentials, defined piecewise for different ranges, allow
more accurate reproduction of the complicated distribution
functions [46–48]. The parameters of these models may
be obtained semi-automatically or fully automatically using
simplex optimization [5, 49–52].

Another popular technique to obtain the coarse-grained in-
teractions is iterative Boltzmann inversion (IBI) [5, 47, 53, 54].
Focusing on the nonbonded interactions, for every iteration a
one-to-one correspondence between the effects at a distance
r0 and the nonbonded potential V (r0) at the same distance
is assumed. In the beginning, a starting potential V0(r) has
to be guessed, which is usually the Boltzmann inversion of
the target distribution function. At each iteration stage n,
a simulation is performed with the last guess Vn(r) of the
nonbonded potential, and the radial distribution function gn(r)

is measured. This leads to a new guess for the nonbonded
potential:

Vn+1(r) = Vn(r) + kBT ln
gn(r)

gtarget(r)
. (4)

The iterations continue until the difference between gn(r) and
gtarget is deemed satisfactory. Usually only a few iterations are
necessary [5, 47].

Other techniques have been used as well. Within our
own group we have described coarse-grained interactions
by a number of functions with coefficients which are left
for automatic optimization by treating them as dynamical
parameters in an extended ensemble [55]. Notably, Ashbaugh
et al used a combination of MD simulations and inverse MC
methods to self-consistently map structural correlations from
atomistic simulations of alkane oligomers onto coarse-grained
potentials [56].

A warning is in place here. All techniques described above
aim at reproducing the structure by means of pair interactions.
This means that the true potential of mean force, equation (1),
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is only approximated and many-body interactions beyond a
certain number of particles (usually two) are ignored. As a
consequence, it is not guaranteed that the thermodynamic state
is correctly described [5, 47, 55].

An option is to include thermodynamic properties in the
optimization scheme. For example Reith et al [47] added
an extra pair potential with an absolute value decreasing
linearly to zero at a cutoff range. The amplitude (positive
or negative) and cutoff range were used as new parameters
for re-optimization. This yielded a radial distribution function
which did not deteriorate too strongly, combined with a correct
pressure. Also, Nielsen et al [57] have developed a coarse-
grained model for n-alkanes (polyethylene) by optimizing
bond and bend parameters and the nonbonded Lennard-Jones
parameters to match observables from atomistic simulations
as well as experimental surface tension and bulk density
data.

As already mentioned, when coarse-graining only a
few atoms to beads the interactions are still relatively
strong. This means that, even though longer simulation
times can be reached, equilibration is still sometimes an
issue. In such cases the equilibration techniques developed
for atomistically detailed models can be used with high
efficiency. For example, recently EB techniques have been
applied to coarse models of poly(ethylene terephtalate) and
atactic polystyrene [23–25, 58].

In summary, when coarse-graining one should always
keep an eye on what properties one is interested in. Because in
practice one is limited to approximating the potential of mean
force in terms of pair interactions, it is impossible to correctly
represent both the structural and thermodynamic properties.
Improving the agreement with one will invariably deteriorate
the agreement with the other, so compromises need to be
made.

4.2. Lattice models

Up to this point we have only considered molecular models
in continuous space. Atomistic models have also been
mapped to lattice models. One of the most important lattice
models for polymers is the MC-based bond fluctuation (BF)
model [59–61], where each superatom occupied eight sites on
a cubic lattice. Bond distances and angles can vary between
different discrete values. The advantage of this approach is
that the possible distances and angles can be chosen in such
a way that bond crossing becomes impossible. Mapping of
real polymers onto the BF model has been tried for bisphenol
polycarbonates and polyethylene [62–65]. Coarse-graining
using the BF model is extensively reviewed in [3].

Mattice and co-workers have developed a mapping from
a rotational isomeric state (RIS) description of a polymer
onto a diamond lattice for the second-nearest-neighbour
positions of polyolefin backbones [66–69]. The intermolecular
potential in this model, with different values of the energy
for different ranges of distances between the superatoms,
was tuned by aiming at producing a zero second virial
coefficient (corresponding to theta conditions) as well as a
correct radius of gyration for polymers such as polyethylene

and polypropylene. For the dynamics local MC moves,
including a crankshaft move, were introduced. Recently
the dynamical updates have been redesigned to study the
mean square displacement in polyethylene melts [70] and in
bidisperse polyethylene melts [71].

4.3. Backmapping: reinserting atomistic details

An important task of CGMD models is to quickly generate
well-equilibrated atomistic polymer structures. For this it
is, of course, necessary to be able to map an equilibrated
coarse-grained model back onto an atomistic model. Such a
backmapping procedure is possible, as has been extensively
reviewed in [3, 7].

Among the first polymers to be equilibrated in this
way are various polycarbonates [46, 48, 72, 73], but more
recently backmapping procedures have also been applied to
polystyrene [44, 58, 74–76] and polyamide [77, 78] chains.

An exciting new development, with possible applications
to the determination of the rheology, is the extension
of backmapping to non-equilibrium situations [79]. In
this method deformed conformations are maintained during
backmapping by applying position restraints. The method has
been demonstrated for atactic polystyrene under steady shear
flow.

4.4. Dynamic properties from coarse-grained molecular
dynamics: rescaling of time

CGMD simulations have not only been used to accelerate
the equilibration of polymer melts, but also to study their
dynamics [7, 9]. We have already discussed that additional
friction factors and stochastic forces are inexorably linked to
the procedure of coarse-graining. However, when the degree
of coarse-graining is not too large, friction is often ignored,
leading to too fast dynamics. This may optimistically be
referred to as ‘speed-up’. In such cases, when dynamic
properties are presented, it is assumed that all important
processes are accelerated by the same factor (usually 2–
5), i.e. that a simple rescaling of time by a single scaling
factor can recover the real dynamics. Although in most
cases this assumption has no theoretical justification, it
nevertheless seems to be correct for low degrees of coarse-
graining, as may be witnessed by the many successful
applications of time rescaling that may be found in the
literature [41, 44, 53, 74, 75, 80–88].

Calibrating the timescale may be done by comparing chain
diffusion coefficients, although for most realistic polymers
the atomistic simulations do not reach long enough times to
observe free chain diffusion. Since the coarse-graining level
is relatively modest, there is hardly any difference between a
bead in a relatively short (but still polymeric) chain and a bead
in a very long chain. Thus it can be expected that a diffusion-
based calibration may be done using relatively short chains.
Harmandaris and co-workers have been very successful in
consistently determining the time scaling factors by comparing
the atomistic and coarse-grained mean square displacements of
relatively short chains of polystyrene [41, 44, 74]. Figure 5
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Figure 5. Example of a successful time mapping of coarse-grained
(CG) simulations onto chemically realistic united atom (UA) MD
simulations of polystyrene. Two melts, with molecular weights 1 and
2 kDa, have been studied, both at T = 463 K. The time scaling factor
S needed for the chain centre-of-mass mean square displacement (a)
is consistent with the time scaling factor for the time correlation of
the end-to-end vector (b). Reprinted with permission from [41].
Copyright 2009 American Chemical Society.

shows a recent example [41], where it is found that the
mean square displacement of the chain centre-of-mass and
the end-to-end vector time correlation can both be accurately
reproduced by the same scaling factor S. It is also possible to
use other shorter local timescales to calibrate the timescale. For
example, one can use the time associated with the relaxation of
subchains, as sampled by time correlations of the higher Rouse
modes [1].

5. Lumping many atoms into blobs: the role of
friction and uncrossability

In order to reach even larger time and length scales one
may combine many more atoms, say �10 monomeric units,
into one coarse-grained particle. The particle positions
must be updated according to a CGSD scheme because the
friction and stochastic forces often dominate the interactions.
Neglect of friction and stochastic forces can lead to erroneous
dynamics [89, 90]. For example, the motion at certain length
scales may appear as oscillatory, whereas the real polymer is
overdamped at these scales.

5.1. Friction and stochastic forces

As already mentioned, the Mori–Zwanzig formalism of
coarse-graining the dynamics leads to a generalized Langevin
equation (GLE), equation (2), in which the friction and
stochastic forces appear with memory [10, 39, 40, 91–93].
Even though this equation is exact, it is very difficult to use
in practice. In the first place, evaluation of the memory terms
requires taking averages over a projected dynamics which one
does not know exactly how to generate. In the second place,
integrating the resulting integro-differential equations is an
extremely challenging numerical task.

Usually one therefore assumes that the timescale
associated with changes in the positions of the coarse-grained
coordinates is much larger than the timescale associated with
the decay of the friction memory. In this so-called Markov
approximation the time dependence of the friction ζmn in
equation (2) is represented by a delta function, resulting in an
ordinary Langevin equation for the dynamics of the coarse-
grained particles. Whether or not the Markov approximation
is valid must be carefully evaluated in each particular case.

Another difficulty remains: the friction and stochastic
forces on a particle still depend on the positions and velocities
of all particles. As already mentioned, it is often assumed
that the friction is pairwise additive with the contribution of
a pair depending only on the distance and relative velocities
between the two particles involved. Doing so, we arrive at
the pair friction model employed in the so-called dissipative
particle dynamics (DPD) method [94]. Although this method
is still relatively costly, especially when the frictions are high,
it is rather popular since it conserves momentum, which is a
prerequisite for hydrodynamic behaviour, and it is easy to use
in non-equilibrium simulations. Within our group we have
studied in detail the pair friction parallel and perpendicular
to the axis connecting the centres of mass of two halves
of a polymer chain in a melt [35]. Also, coarse-grained
forcefields for polyethylene and cis-polybutadiene for use in
DPD have been determined in the group of Rousseau [95, 96].
The Rousseau group discussed the dependence of the friction
coefficient on the coarse-graining level in view of the overall
scaling of the dynamical properties.

The use of pair frictions in DPD is necessarily linked
to the use of a second-order propagator. This implies that
one must use low frictions to reach long timescales (high
frictions require too small time steps). The damage an
artificially lowered friction does to the rheological properties
is often counterbalanced by using harder conservative
interactions [97]. This often leads to unrealistic structure on
the scale of the bead.

Fortunately, in the case of polymer melts it is often
admissible to use a scalar friction (i.e. with a static
background), because the friction may be thought of as being
caused by the motion of (part of) a chain relative to the rest of
the material, which to a first approximation may be taken to
be at rest. Propagation of a velocity field as in a normal liquid
is highly improbable, meaning that hydrodynamic interactions
are screened [1]. The positions of the coarse-grain particles
can then be updated by a first-order Brownian dynamics
propagator, using much larger time steps than are possible with
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Figure 6. The potential of mean force between bonded (circles) and
nonbonded (squares) coarse-grained pieces of polyethylene
(T = 450 K), each piece representing the centre of mass of 20
carbon groups. These potentials were obtained from distribution
functions measured in atomistically detailed MD simulations of
C120H242. Note that kBT = 3.74 kJ mol−1, meaning that without
additional measures bonds can easily cross each other.

a second-order propagator. One should be aware, however,
that such a first-order Brownian dynamics propagator is not
Galilean-invariant. Extra care should therefore be taken when
simulating flow of a polymer melt. Often it is assumed
that the particles flow affinely with the imposed deformation,
although in the case of shear flow this assumption may be
relaxed [98–100].

5.2. Uncrossability of bonds and entanglement

The advantage of lumping together only a few atoms in
CGMD models is that the resulting interactions are still
sufficiently strong to prevent bond crossing. In bead–spring
models, such as the important finitely extensible nonlinear
elastic (FENE) model [101–111], uncrossability is ensured
by the use of relatively hard beads. Such models therefore
belong to the class of CGMD models. Relatively small
friction and stochastic forces have been added to bead–spring
models, but with the goal of stabilizing the integration of the
equations of motion over very long timescales [102], rather
than representing the physical friction caused by the degrees
of freedom that have been coarse-grained out.

As more and more atoms are coarse-grained into one
particle, the interactions between them become softer and
softer [88, 112, 113], see figure 6. Beyond a certain
degree of coarse-graining, bonds will be able to cross each
other. Without additional measures the important entanglement
effect, leading to altered and much slower dynamics, is
therefore lost.

An algorithm that can detect and prevent unphysical
bond crossings has been developed by us [112]. Employing
this so-called Twentanglement algorithm in a simulation of
highly coarse-grained polymer chains will reintroduce the
entanglement effect. The principle of the algorithm is depicted
in figure 7. The bonds are considered to be elastic bands
between the bonded particles. The algorithm keeps track of
all (unattached) bond vectors which are close together. For
each bond vector and at each instant of time the following triple
product is calculated:

Vi j = (ri − r j) · [(ri+1 − ri ) × (r j+1 − r j)], (5)

where we have used figure 7 as a reference for the indices.
The absolute value of equation (5) is the volume of the
parallelepiped defined by the vectors ri+1,i , r j+1, j , and ri, j .
Aside from some pathological cases [112], if Vi j changes
sign from one time step to the next, a bond crossing
may have occurred. Additional checks are made to ensure
that the crossing is taking place along the physical part
of the line segments (the above equation checks if two
infinite lines have crossed). If a real bond crossing has
occurred, an entanglement is created at the crossing point.
Subsequently, the associated volume Vi j will serve to detect
future disentanglements. If the volume Vi j of the four
objects surrounding an entanglement changes sign, a possible
disentanglement has occurred, i.e. figure 7 may also be read
backwards. Usually only a few of the uncrossability constraints
contribute to an entanglement in the usual sense of long-lasting
obstacles, slowing down the chain movement. For instance, a
C60H122 chain is generally considered not to be entangled, yet
many ‘entanglements’ occur in a coarse-grained simulation.
The dynamics of the ‘entanglement’ points is determined by
a balance of forces, as described in detail in [112].

Because uncrossability is explicitly taken care of, there
is much freedom to choose the number of monomers per
coarse-grained particle. In our previous work, the following
considerations were taken into account: (1) the degree
of coarse-graining should be large enough to allow for a
significant increase in the time and length scales accessible to

Figure 7. Principle of the Twentanglement algorithm. (a) Two line segments representing a bond are closing in on each other. (b) At a certain
moment these bonds will touch. An ‘entanglement’ is created at the crossing point X . (c) After this, the bonds are viewed as slippery elastic
bands. The elasticity will slow down the relative speed of the bonds. This sequence of events may also be reversed.
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Figure 8. The zero-shear viscosity η0 as a function of molecular
weight Mw for polyethylene at T = 450 K from coarse-grained
simulations using Twentanglement [114] (solid squares) and
experiment [119] (dashed lines). The result from a chemically
detailed simulation of C100 [28] is also included (open circle).
Observe that the steep increase in viscosity does not start at the
entanglement molecular weight Me but at a critical molecular weight
Mc which is several times higher [114].

simulation, and (2) if one wants to study reptation effects, the
degree of coarse-graining should not be so large that the size
of a coarse-grained particle exceeds the typical diameter of the
tube in the reptation picture, in other words the entanglement
length. A suitable choice for polyethylene was to coarse-
grain 20 CH2 units to one particle [112]. We have also
been able to measure the required friction on such a coarse-
grained particle from a chemically realistic simulation by
analysing the correlations in the constraint force required
to keep the location of a coarse-grained particle fixed in
an atomistically detailed simulation [114]. By using the
Twentanglement algorithm we have been able to predict the
dynamics and rheological properties of polyethylene melts
up to C1000 (figure 8) [114–117] and the dynamics of
poly(ethylene-alt-propylene) melts [118]. We also applied
the method to entangled worm-like micelles of a specific
surfactant chemistry and found quantitative agreement with
experimentally determined rheology [98].

Analysing the results of these coarse-grained simulations
we found that the chain stiffness is an important ingredient
for the dynamics of polymer chains. Indeed, Faller and
Müller-Plathe noted that chain stiffness intensifies the reptation
characteristics of polymer melt dynamics [81, 120].

Topological constraints have also recently been introduced
in DPD simulation methods [97, 113, 121]. In standard
DPD, the conservative forces between the polymer segments
decrease linearly with increasing pair distance. The
interactions are therefore naturally quite soft and polymer
chains built from such soft beads behave as phantom chains
who pass freely through each other [122]. Nikunen et al
prevented such chain crossing by simply increasing the
strength of the DPD forces [97], whereas Liu et al added a

rigid core to the DPD spheres [121]. Note that both these
schemes essentially make the conservative interactions more
rigid, which is opposite to the trend observed when coarse-
graining to higher levels. One of the dire consequences is
the introduction of unwanted structure on the scale of the
DPD particle, which makes these methods unsuitable for high
degrees of coarse-graining.

Uncrossability of chain bonds can alternatively be
introduced by introducting an additional repulsive interaction
which is based on the distance of closest approach between
two bonds [113, 123, 124]. Another possibility to conserve
the topology, at least for Brownian dynamics simulations, is
to simply forbid random displacements that lead to crossing of
bonds [125]. In a similar vein, one of us has very recently
developed an algorithm which efficiently treats collisions
between infinitely thin bonds in such a way that momentum
and energy are conserved locally [126]. This allows the study
of the relative importance of topological and hydrodynamic
interactions. It should be noted that in all methods described
in this paragraph the bonds themselves stay rigid. A collision
between two such bonds is a hard collision. In real polymer
melts the bonds between consecutive coarse-grain beads are
highly flexible, and the collisions will consequently be much
softer (e.g. as in Twentanglement). As noted above [81, 120],
the intrinsic stiffness of the bonds may lead to artificially
enhanced entanglement effects. These methods are therefore
more suitable for simulation of semiflexible chains, or for
flexible chains at such a low degree of coarse-graining that
local chain stiffness is still important.

6. Primitive paths

We have seen in the previous section that beyond a certain level
of coarse-graining it becomes necessary to somehow maintain
the information about the topology of the system, otherwise
the important entanglement effect is lost. One option is to
use algorithms such as Twentanglement. Another option is to
switch to a one-chain model based on the reptation model [1].
This, however, poses several problems. Reptation theory is still
facing many questions which cannot be answered within the
model. For example, to quote a recent review of Likhtman [2],
it is still not clear what is the entanglement or tube field
restricting the chain motion. What are the statistical properties
of the tube—is it semiflexible on the length scale of the tube
diameter? What is the microscopic basis for the assumptions
used to describe constraint release in the linear and nonlinear
regimes? What happens to the entanglements and the tubes
after large deformations or in fast flows? A practical question
of relevance for quantitative predictions is how the numerical
parameters of the tube model, such as the entanglement mass
and tube diameter, can be related to the chemical composition
of the polymer.

6.1. Primitive path analysis

The questions posed above have provoked an outburst of
activities which try to determine the primitive path and
entanglement characteristics from more detailed simula-
tions [6, 22, 31, 58, 84, 102, 127–134]. All efforts are
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Figure 9. Result of a primitive path analysis of a melt of 200 chains
each consisting of 350 beads. The primitive path of one chain is
shown (in red), together with all of those it is entangled with (in
blue). The primitive paths of all other chains are shown as thin lines.
From [127]. Reprinted with permission from AAAS.

based on Edward’s view [1] of a primitive path as the
shortest path remaining when one holds chain ends fixed,
while continuously reducing (shrinking) a chain’s contour
without violating uncrossability [130]. The chain contours
are reduced simultaneously until topological constraints block
further shrinkage.

Everaers et al introduced one such minimization method
to extract the tube diameter and entanglement length from
more detailed simulations of linear chains [127, 128], see
figure 9. On the basis of the tube model, both the real chain
and the primitive path beyond some length scale are described
as random walk chains with the same mean square end-to-
end distance 〈R2〉, but with different contour lengths. The
entanglement length and tube diameter d correspond to the
length and end-to-end distance of an entanglement strand,
which is identified with the Kuhn segment of the primitive path.
Thus it is assumed that the following relations hold [1]:

d = 〈R2〉
〈Lpp〉 , Ne = N

〈R2〉
〈Lpp〉2

, (6)

where 〈Lpp〉 is the average primitive path contour length and
N is the number of Kuhn segments of the real chain. Ne is
the entanglement molecular weight expressed as the number of
Kuhn segments of the real chain. A refinement of this method
to exclude self-entanglement was introduced later [135]. It
turned out that entanglements between distant sections of the
same chain make a negligible contribution to the tube and
that the contour length between local self-knots is significantly
larger than the entanglement length.

The above method has been applied, among others, to
polystyrene melts [41], to semidilute solutions of stiffer chains
such as actin [136], and to bisphenol-A-polycarbonate [82],
which was found to have a surprisingly low entanglement

length. The estimated entanglement molecular weight Me

is usually in good agreement with the experimental value
obtained from the plateau modulus G0.

The plateau modulus is a mechanical property of the
system. Following a small step strain γ0, the shear stress
γ0G(t) initially decays according to local relaxation processes
on length scales smaller than the tube diameter. For well-
entangled chains, after the entanglement time τe, further
relaxation of G(t) is severely delayed by the topological
interactions, leading to an apparent plateau; only for times
much longer than τe can G(t) finally relax to zero. The plateau
modulus may be defined as the modulus at times larger than
τe, but much smaller than the terminal relaxation time. The
relation between the plateau modulus and the entanglement
molecular weight is given by [1]

G0 = 4

5

ρRT

Me
. (7)

Here ρ is the polymer (mass) density. This expression is
very similar (apart from the factor 4/5) to a prediction for
the affine model of rubber elasticity [1]. Indeed, the good
agreement between the entanglement length from the primitive
path analysis and the entanglement length from the plateau
modulus may intuitively be understood because they both
probe the same (albeit temporary) rubber-like elasticity of the
underlying primitive network of chains.

The agreement with other estimates of the entanglement
length is less good, however, especially when these estimates
are based on characteristic changes in the time dependence
of quantities which measure the motion of individual chains
within their prospective tubes [61, 116]. It may be argued
that this disagreement is caused by the dependence on non-
exact theory in interpreting these measurements [111, 130].
This is certainly a factor, but the remarkable observation
is that with reasonable assumptions in most cases time-
resolved measurements yield an entanglement length which is
consistently larger than the one based on the plateau modulus.
For example, for polyethylene, entanglement length estimates
from the dynamic structure factor, the crossover in Rouse mode
time correlations and the entanglement time τe (estimated
directly from the time of the inflection point in G(t)) all give a
value which is consistently larger by a factor of 1.5 compared
to the estimate from the plateau modulus [116].

The disagreement with the ‘plateau modulus’ entangle-
ment length may have two causes. First, dynamic time-
resolved quantities are probably more sensitive to details of
the statistics (e.g. fluctuations) of the entanglements. Second,
dynamic time-resolved quantities may be more sensitive to the
finite stiffness of a real polymer chain on the scale of the tube
diameter.

In a recent article [137], Greco noted that, because the
tube diameter is relatively small, it is very important to
include fluctuation effects in the description of entanglements.
Unfortunately, at the time of writing this review, there is
still no definite agreement on the best way to determine
the primitive paths and their statistics. Different coarse-
graining schemes for arriving at the primitive path lead to
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Figure 10. Schematic representation of a primitive chain network model. (a) The motion of slip-links (rings) is influenced by the tension in
the chain segments (arrows) and an osmotic force. (b) The motion of the monomers through the slip-links (arrows) results in repetitive
motion. (Picture kindly provided by Y Masubuchi.)

differences in the statistics. For example, Kröger and co-
workers proposed an alternative algorithm which returns a
shortest path and related number of entanglements for a given
configuration of polymers [129, 133]. Primitive paths are
treated as infinitely thin and tensionless lines rather than
multibead chains, and excluded volume is taken into account
without a force law. Their implementation allows construction
of an optimal shortest path for 3D systems. The number
of entanglements is then obtained from the shortest path as
either the number of interior kinks, or from the average length
of a line segment. This primitive path analysis has been
applied to polyethylene C24 to C1000 [133, 138, 139], as well
as the FENE model [133], validating analytical predictions
of Schieber [140] about the shape of the distribution for
the number of strands in a chain at equilibrium. It was
also concluded that the number of entanglements obtained
by assuming random walk statistics, as is done in the work
of Everaers and co-workers, deviates significantly from the
predictions by the algorithm of Kröger and co-workers.

The random walk approximation partly fails because
real polymers are typically still somewhat stiff at the
scale of the average distance between two uncrossability
constraints [130–133]. As a result, the tube diameter cannot be
equated to the Kuhn step length of the primitive path. Although
this fact is well known for semiflexible fibre suspensions,
where theoretical expressions for the tube diameter are
different from expressions for the deflection length (average
distance between successive collisions of the fibre with its
tube) [141], it seems to be often ignored in the polymer melt
literature. Stiffness effects have been introduced recently in
primitive path analyses by Hoy et al [133] and Tzoumanekas
et al [132].

6.2. Primitive chain networks and slip-link models

Although the precise characteristics of entanglements and/or
confining tubes have remained somewhat elusive, this has

not stopped researchers from trying to predict polymer melt
rheology by employing primitive path-based models.

An important development in this direction is the primitive
chain (or slip-link) network model developed by Masubuchi
and others [142, 143]. In this model polymer chains are coarse-
grained to the level of segments between entanglements, see
figure 10. Chain coupling is achieved by confining two chains
by a common slip-link placed at a specific position in 3D space.
The chains fulfil a force balance at the slip-links, similar to the
treatment of uncrossability constraints in the Twentanglement
algorithm [112] which act on a somewhat smaller scale. The
Langevin equation for the slip-links contains both the tension
in the chain segments emanating from the slip-link and an
osmotic force arising from density fluctuations. The motion of
monomers through the slip-links ultimately generates reptation
as well as tube length fluctuations. When creating new slip-
links (i.e. new entanglements), a partner chain segment is
chosen randomly among those spatially close to the advancing
chain end.

The primitive chain network model correctly predicts the
scaling of the longest relaxation time and the self-diffusion
with chain length [142]. The model was later modified to also
include the concept of dynamic tube dilution [144], and good
agreement between simulated and real linear and nonlinear
rheology was found. Extensions to branched polymers, blends
and block copolymers have all been made [145, 146]. Recently
the model has been subjected to various sudden deformations
to study the damping function, which is essentially the ratio
of nonlinear stress relaxation to the linear shear relaxation
modulus [147–149]. It was found that the force balance is
a dominant correction over the basic Doi–Edwards theory
as compared with the effect of convective constraint release.
Furthermore, the predicted normal stress ratio in shear,
a quantity which is very sensitive to different modelling
assumptions, was found to be in good agreement with
experiments.

In order to facilitate fast computations of the rheology,
various single-chain slip-link models have also been developed
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[150–155]. In such models an ensemble of primitive paths
is followed in time. Coupling between chains is not explicit,
as in the above primitive chain network model, but virtual
by defining random relations between slip-links on different
chains. Whenever a slip-link of a chain is destroyed due to tube
renewal at a chain end, the corresponding partner along the
contour of another chain is also eliminated. The same applies
to the creation of new slip-links.

Very recently, the effectiveness of such a single-chain
slip-link model in describing the dynamics and rheology of
entangled polymers was tested by systematically comparing
slip-link with FENE MD results [156]. The parameters
of the model were determined by using the mean square
displacements of one particular chain length as a target
function. Using the same set of parameters, it was then
tested if the predictions of the mean square displacements for
other chain lengths agreed with the MD calculations. This
was followed by a comparison of the shear relaxation moduli
G(t). The work identified a limitation of the original slip–
spring model in describing the static structure of the polymer
chain as seen in MD, which was remedied by introducing
a pairwise repulsive potential between the monomers in the
chains. Also, poor agreement of the mean square monomer
displacements at short times could be rectified by the use of
generalized Langevin equations for the dynamics. The latter,
of course, somewhat diminishes the computational efficiency
of the method.

Slip-link models are generally successful in their overall
‘rheological’ performance and predictions [130]. They also
offer the possibility to introduce new tube renewal mechanisms
and, by turning these on or off at will, probe the effect on the
rheology independent of other mechanisms. A disadvantage of
both single-chain and multi-chain slip-link models is that the
link with the chemistry is usually distant; if a comparison with
a microscopically detailed model is made at all, the parameters
are usually obtained by fitting rather than an ab initio coarse-
graining procedure.

An attempt at systematically bringing in structure from
a detailed model, albeit again a bead–spring-type model,
was introduced by Rakshit and Picu [157]. In their method
reptation is enforced because the chain inner blobs are
constrained to move along the backbone of the coarse-grained
chain (the primitive path), while the end blobs move in
the three-dimensional embedding space. These end blobs
continuously redefine the diffusion path for the inner blobs. It
was shown that various distribution functions, relaxation rates
and the diffusion dynamics are properly represented. Recently,
this model was used to study start-up and step strain shear
flows [158]. The authors showed that their method reproduces
several features observed experimentally such as the overshoot
during start-up shear flow and shear thinning at large shear
rates.

7. Super-coarse-graining: a polymer as a single soft
particle

Industrial processing of polymers usually involves extrusion of
a hot melt through a die or injection of a melt into a mould.

Modern applications also include nanoparticles in the melt
to form composites. To optimize the process parameters for
such complex flows it is important to understand the interplay
between time and length scales of the polymer and those
imposed by the complex geometries. The low frequency linear
and nonlinear rheology of polymer melts is basically concerned
with displacements of centres of mass only. Given the need
to also reach large length scales, it is therefore natural to just
try to develop simulation models that only keep track of the
dynamics of the centres of mass of all diffusing constituents.

An early application of this idea was presented by Murat
and Kremer [159]. These authors developed an efficient
and rather general model in which whole polymer chains
are represented as soft ellipsoidal particles. The interaction
between two such particles is taken to be proportional to the
spatial overlap of their monomer density distributions. Since
the internal degrees of freedom of a chain are integrated out,
many thousands of chains can be simulated within reasonable
computer time. More recently, McCarthy et al introduced an
approach based on the Ornstein–Zernike equations, in which
a polymer is coarse-grained to a soft sphere on the scale of
its radius of gyration [160]. At such a high level of coarse-
graining typical maximum interaction energies are of the order
of kBT , the thermal energy.

All these approaches focus on reproducing the static
structure of a polymer melt, with good to excellent agreement
with the structure obtained from more detailed simulations.
However, because such models ignore memory and/or
entanglement effects, they do not have the characteristic slow
dynamics of real polymer chains and therefore cannot be used
to predict the long-time rheology.

One may be tempted to slow down the dynamics of such
a super-coarse-grained system by using a large friction term.
Lyubimov et al recently introduced a method to estimate the
friction on a polymer represented by a soft particle [161]. Their
approach is based on an intermediate mapping of a chemically
detailed chain on a freely rotating chain model and using a
hard-bead approximation to evaluate integrals involving the
radial distribution function and dynamic structure factor. This
yields a series of diffusion coefficients in good agreement with
results of atomistic simulations of unentangled and slightly
entangled polyethylene melts. No rheological predictions were
made.

The use of a single large friction term may be questioned,
however, because in real entangled polymeric systems
the frictions and random forces have a memory of the
configurations the system has gone through in the recent, and
sometimes even the distant, past. A simple Brownian dynamics
propagator with realistic mean forces and uncorrelated, fully
random displacements without memory will not reproduce
correct sequences of configurations of the retained coordinates.

In recent years, our group has introduced and explored a
new efficient framework to reintroduce memory of previous
configurations in soft matter simulations [99, 100, 162–166].
In this framework, called responsive particle dynamics
(RaPiD), configurations and forces are described by as few
variables as possible. In the case of polymer chains,
similar to the works mentioned above, we usually restrict
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ourselves to three coordinates for the location of each centre
of mass. To circumvent the complicated introduction of
memory effects in friction forces and stochastic displacements
(as in the generalized Langevin equation, equation (2))
we introduce a relatively small set of additional dynamic
variables, symbolically denoted as n(t), which keep track
of the thermodynamic state of the eliminated coordinates
for the given values of the retained coordinates. If the
configuration of retained coordinates is suddenly changed
(e.g. by a sudden change in the distance between the centres
of mass of two polymers), the equilibrium values n0 for the
additional variables change too, but the relaxation to n0 takes
place over a finite time. This gives rise to strong transient
forces in addition to the thermodynamic forces deriving from
the potential of mean force. It is possible to show that, to lowest
order, the transient forces may be thought of as originating
from a penalty free energy function which is quadratic in the
deviations of the additional variables [163].

The particular additional variables and corresponding
names that are used to describe the transient forces depend on
the system under study. In some cases, such as for telechelic
polymer networks, the variables are the number of bridging
polymeric chains between nodes of the network [100, 165]. In
other cases, more relevant to this review on polymer melts, the
variables are the number of entanglements shared between a
particular polymer chain and its immediate neighbours [162].

To some readers it will be rather surprising that a single-
particle model would produce rheological results that are most
naturally described by assuming curvilinear tubes surrounding
each chain which prohibit the chains to move in any way other
then along the primitive paths of the tubes. A few qualitative
remarks may be of help at this point [163]. First of all, the main
action of the tubes is to conserve the prevailing configurations
of the chains and their centres of mass in particular. This is
exactly what the transient forces do as well. In a sense, the
transient forces tie all centres of mass harmonically to their
instantaneous positions. Second, beyond the Rouse time, i.e. as
soon as the chains perform one-dimensional diffusive motions
along their tube axes, as a result of the Gaussian character
of the tube configurations the centres of mass of all chains
perform simple random displacements. The only thing the tube
does is to define the distribution of possible displacements and
their averages in particular. Again this is what the transient
forces do as well.

The RaPiD method has demonstrated its usefulness by
correctly reproducing the long-time linear and nonlinear rheol-
ogy of linear polymers [162], telechelic polymers [100, 165],
star polymers [164] and polymeric adhesives [166]. The next
challenge is to link the few additional parameters introduced
by the method to the chemical details of the system. In some
cases, such as for the telechelic polymers [100, 165], such a
link has already been successfully established.

8. Conclusion

The enormous range of time and length scales associated
with the dynamics of entangled polymers precludes the use

of one single computer simulation to calculate the large-
scale rheological properties starting from the detailed chemical
structure. Instead, some form of coarse-graining is necessary.
In this review we have made a distinction between CGMD and
CGSD.

In CGMD a few atoms (up to five backbone carbon atoms)
are lumped into relatively hard beads. Uncrossability of bonds
is therefore automatically ensured. A large body of work
has gone into deriving the effective interactions between the
relatively hard beads, with IBI emerging as one of the most
popular techniques. When coarse-graining the interactions,
technically one should include additional friction and random
forces, but fortunately in CGMD the friction is not dominant.
If friction is ignored the dynamics will be too fast, usually by a
factor 2–5. Combined with the lower number of particles this
leads to a significant computational speed-up of the order of
100. Agreement with detailed atomistic simulations is often
recovered by a suitable time scaling. Using these techniques it
is possible to predict the rheology of melts of specific polymers
up to one or two entanglement lengths.

To reach a higher degree of coarse-graining, in CGSD
many more atoms are lumped together (more than ten
backbone carbon atoms), leading to relatively soft beads.
Friction and stochastic forces dominate the interactions.
Unless counteractions are taken, the soft interactions cannot
prevent crossing of the bonds between the coarse-grained
particles. Possible counteractions include application of the
Twentanglement algorithm or prohibition of moves that lead
to crossing of bonds. Using such techniques it is possible to
predict the rheology of melts of specific polymers up to about
ten entanglement lengths.

To predict the rheology of polymers of longer polymers
(say, more than ten entanglement lengths), one is forced
to make use of the tube model by obtaining entanglement
characteristics through a primitive path analysis and simulating
a primitive chain network. Primitive path analysis algorithms
allow us to determine the tube diameter and entanglement
molecular weight from atomistically detailed or CGMD
simulations. The entanglement molecular weight so obtained
is often in good agreement with the entanglement molecular
weight derived from the experimental plateau modulus.
However, predictions of time-dependent properties rely on
details of the interpretation of reptation theory, and often
seem to be determined by a somewhat different entanglement
molecular weight. A prerequisite for future computational
developments is to have available a better understanding of
the relation between the two apparently different entanglement
molecular weights and their relations to the effects of chain
stiffness, finite size fluctuations and tube renewal mechanisms.
This information needs to be reliably predicted from detailed,
chemically realistic models. Improvements in understanding
will be used to develop more realistic slip-link models. In this
respect it is important to note that already now slip-link models
are very effective and fast in deriving the rheological properties
of polymer melts.

Finally we discussed the use of super-coarse-grained
models, in which a full polymer is represented by a single
particle, which may be used to predict flow and rheology on
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industrially relevant large time and length scales. Because
coarse-graining has been taken to its limit, conservative
interactions between full polymer chains are extremely soft
and memory or entanglement effects are prominent. To
efficiently introduce memory effects we have developed the
RaPiD method.

In summary, our search for the link between chemical
structure and long-time dynamics has led to many innovations
during the last two decades. Computer simulations will
continue to smooth the bumpy road from chemistry to
rheology.
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